
J .  Fluid Mech. (1968). vol. 33, part 3, pp. 4 1 7 4 3 5  

Printed in Great Britain 

417 

The oscillations of a fluid droplet immersed in 
another fluid 

By C. A.  MILLER AND L. E. SCRIVEN 
Department of Chemical Engineering, University of Minnesota, 

Minneapolis, Minnesota 55455 

(Received 31 May 1967 and in revised form 11 December 1967) 

From an analysis of small oscillations of a viscous fluid droplet immersed in 
another viscous fluid a general dispersion equation is derived by which frequency 
and rate of damping of oscillations can be calculated for arbitrary values of 
droplet size, physical properties of the fluids, and interfacial viscosity and 
elasticity coefficients. The equation is studied for two distinct extremes of 
interfacial characteristics: (i) a free interface between the two fluids in which 
only a constant, uniform interfacial tension acts; (ii) an ‘inextensible ’ interface 
between the two fluids, that is, a highly condensed film or membrane which, to 
first order, cannot be locally expanded or contracted. Results obtained are 
compared with those previously published for various special cases. 

When the viscosities of both fluids are low, the primary contribution to the 
rate of damping of oscillations is generally the viscous dissipation in a boundary 
layer near the interface, in both the free and inextensible interface situations. 
For this reason inviscid velocity profiles, which do not account for the boundary- 
layer flow, do not lead to good approximations to the damping rate. The two 
exceptions in which the approximation based on inviscid profiles is adequate 
occur when the interface is free and either the interior or exterior fluid is a gas of 
negligible density and viscosity. 

1. Introduction 
A droplet of one fluid which is immersed in anobher fluid assumes a static 

shape that is nearly spherical when gravitational effects are small in comparison 
with interfacial tension effects as, for example, when the droplet is small, the 
two fluid densities are about equal, or interfacial tension is high. If such a droplet 
is deformed slightly by some external force which is applied and then removed, 
the droplet will return to its former spherical shape. Depending on the physical 
properties of the fluids and the composition of the interface this process may 
involve either a series of oscillations about the spherical shape with continuously 
decreasing amplitude or else an aperiodic direct return to the spherical shape. 

This typeof motionof fluid droplets occurs in awidevariety of physical systems. 
Many mass transfer operations involve small droplets of one fluid immersed in 
another fluid because such an arrangement provides a relatively large interfacial 
area for a given volume of the dispersed phase. Emulsions and fluid inclusions 
in biological cells are other examples. Sometimes the droplets may have mem- 
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branes or highly condensed films of surface active material at  the interface as in 
cellular organelles and some emulsions. Forces causing initial deformation might 
be, for example, shear forces resulting from flow or transient gradients in inter- 
facial tension caused by local variations in interfacial concentration or tempera- 
ture. 

In this paper we present a general analysis of small oscillations of a droplet of 
one viscous fluid immersed in another. The analysis considers an interface with 
viscoelastic properties but, surprisingly, even for the case of the free interface no 
general analysis has heretofore been published, to the best of our knowledge. 
However, solutions do exist for several special cases of the free-interface problem. 
An expression for oscillation frequency when both fluids are inviscid may be 
found in Lamb (1932). An analysis applicable to a droplet of a viscous fluid 
oscillating in a vacuum or low density gas has been performed by Reid (1960) and 
is conveniently summarized in the book by Chandrasekhar (1961). Lamb 
(1932) had previously developed approximate expressions for the rate of damping 
of oscillations for such a droplet when its viscosity is small and for a cavity or 
bubble of low density gas oscillating in a liquid of low viscosity. In  obtaining 
these expressions he used the velocity fields found for small oscillations of 
inviscid fluids to estimate the rate of viscous dissipation when viscosity is small 
but not zero. Valentine, Sather & Heideger (1965) used the same method to 
obtain an expression for the damping rate when both interior and exterior 
fluids are liquids of low viscosity. It is established below (0 5) that their expression 
substantially underestimates the damping rate because the inviscid solution, 
which permits slip to occur at the interface, cannot account for a boundary- 
layer flow near the interface. This boundary-layer flow is, except in very small 
droplets, the primary source of viscous dissipation when both fluids are liquids, 
even when the viscosities are very low. 

Various models to describe the rheology of interfaces have been proposed. 
Such features as interfacial viscosity and elasticity, resistance to bending, and 
diffusion of surface-active material between interface and bulk fluids have been 
incorporated in one or more models; these have been adequately described by 
Oldroyd (1955), Scriven (1960), Goodrich (1961), Levich (1962);Eliassen (1963), 
Hansen & Mann (1964), and others. In  order to simplify the analysis we restrict 
our consideration to an interface having only viscous and elastic properties. A 
limiting case of such an interface which can serve as a first approximation for 
droplets covered by membranes or highly condensed films is the ‘inextensible ’ 
interface first considered by Lamb (1932). This amounts to an interfacial film 
sufficiently condensed that no local expansion or contraction may occur. Benja- 
min (1962) developed an approximate expression relating the rate of decay of 
oscillations to oscillation frequency for a cavity separated by an inextensible 
interface from a fluid of low viscosity. We show below that his equation and 
others for inextensible interfaces can be obtained from the general analysis when 
the coefficient of either dilatational elasticity or dilatational viscosity becomes 
very large. 
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2. Method of analysis. Basic equations 
The two bulk fluids are taken as isothermal, incompressible, and Newtonian. 

It is presumed that the ratio gL R2Ap/y is sufficiently small that gravitational 
forces are negligible (gL is the local acceleration of gravity, R the droplet radius, 
Ap the difference in fluid densities and y the interfacial tension). Moreover, the 
ratio of radial displacement of the interface, B, to the wavelength along the 
interface, 2rrRI1, say, is supposed to be sufficiently small that the nonlinear term 
in the Navier-Stokes equation can be neglected (compare Levich 1962). The 
equation of motion then becomes 

av 1 

at P 
_ -  - - - V p + v V v  

Taking the curl of this equation gives an equation governing the vorticity field. 
I ts  radial component is 

where x is the radial component of vorticity. Similarly an equation in the radial 
component of velocity is obtained by taking the radial component of the curl 
of the vorticity equation 

V 2  - - VV (rw) = 0 ,  
(:t 2, 

(3) 

where w is the radial component of ve1ocity.t We suppose that w and x may be 
expanded in terms of spherical harmonics; each term of the respective expansions 
has the form 

rwlm = e d L f l n t ( r ) Y y ( a ) ,  (4) 

rxzrn = e-b%n ( r )  yy (4, ( 5 )  

where a is the position vector of a point on the unit sphere. Note that the real 
part pR of J!I is the amplification or decay factor, a positive pR corresponding to 
the latter. The imaginary part PI is the angular frequency of oscillation. That /3 
depends on 1 but not m will be seen from the dispersion equation to be derived. 
As a matter of convenience we shall drop the subscripts 1 and m except where 
they are essential for clarity. When (4) and (5) are substituted into (2) 
and the resulting differential equations in W and 2 are solved, we find 

where w2 = /3/v and 2Z'(&(w) and %\?,(wr) are an appropriate 
independent half-integral-order Bessel functions. 

and (3) 

(6) 

( 7 )  

pair of 

See Chandrasekhar (1961, pp. 220-222) for a more detailed derivation of these equa- 
tions. 
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For an inviscid fluid (3) reduces to the requirement that rw satisfy Laplace’s 
equation; in this instance W ( r )  is given by the first two terms of (6), the ‘inviscid 
part’ of the solution. The two terms involving Bessel functions are the ‘viscous 
part’ of the solution. Similarly the entire solution given by (7)  can be called the 
viscous solution for Z(r) ,  since the latter vanishes identically in the inviscid case. 

The problem is now to evaluate the time factor p and the constants a j  and b j  
of (6) and (7) from the boundary conditions. Once this has been done the problem 
is completely solved inasmuch as the vector velocity field can be constructed 
from the scalar w and z fields as has been shown by Sani (1963) 

r2 
v = e,w + -~ [ V I I B W  - e,  x V,,z]. q z  + 1) 

where e, is the unit vector in the radial direction, V,, is the surface gradient 
operator 

2 l a  
6r r2 or 

V-e , -  and 9 J - , r 2 .  

The pressure field may also be constructed from the radial velocity field by 

If ply,& = q m ( r )  e-PllYy (a), we find using this procedure that P(r) is given by 
combining the divergence of (1) with its radial component. 

P(r)  is the increment in pressure from its static value due to  fluid motion. 

3. Boundary conditions 
We use the subscript i for quantities associated with the inner fluid and the 

subscript o for those associated with the outer fluid. Four obvious boundary 
conditions are that and Zi must be finite a t  r = 0 and that W, and 2, must 
remain finite as r + 00. Applying these conditions gives 

where and H& are half-integral-order Bessel and Hankel functions of the 
first kind, respectively. 

In  addition, velocity must be continuous at  the interface and the kinematic 
condition, which requires radial velocity of the interface itself to equal radial 
velocity of both fluids at  the interface, must be satisfied. The radial displacement 



Oscillations of a jluid droplet 421 

B of the interface from the initial spherical configuration of radius R can be 
expanded in a series which has terms of the form 

B,, = Balm e-Pl (a). (14) 

Then application of the boundary conditions just adduced gives four scalar 
equations ; 

(a )  kinematic condition 

PB, + a1 R1-l + ag ( - C ) ' A . , . ~ ( w i R )  2wi R3 = 0; 

( b )  continuity of radial velocity 

Without the Bessel-function terms these two equations are boundary conditions 
which can be satisfied when both fluids are inviscid. However, the equations 
requiring continuity of tangential velocity, which are considered next, cannot, 
in general, be satisfied by inviscid fluids. In  fact the occurrence of slip at  solid- 
liquid and liquid-liquid interfaces is a characteristic feature of inviscid solutions. 

Because tangential velocity is a two-dimensional vector, requiring its con- 
tinuity must involve two scalar equations. Although a pair of equations could 
be obtained by taking components with respect to some co-ordinate system on 
the interface, it proves far more convenient to work instead with the scalar 
equations obtained by taking the surface divergence and the radial component 
of the surface curl of the continuity condition in the vector form, v I I ~  = vIr,,. 
The advantage of this procedure results from the fact that the surface divergence 
equation contains only the radial velocities and not the radial vorticities while 
the surface curl equation contains the radial vorticities alone. The equations are 
as follows: 

(c )  surface divergence 

(d  ) radial component of surface curl 

b, ( ~ ) ' ; / i + i ( w i R ) - b , ( s ) ( B : L y ; ( w , R )  Bw, R 3w R = 0. 

The final boundary condition is the balance of forces at  the interface. It again 
proves convenient to replace the vector boundary condition by an equivalent 
set of three scalar equations. These are the radial component, the surface diver- 
gence and the radial component of the surface curl of the vector force balance. 
These three equations have been worked out by Bupara (1964), for the case of an 
interface having viscous properties (Scriven 1960). Forces stemming from elastic 
behaviour are easily included because they depend on interfacial strain in the 
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same manner that viscous forces depend on the interfacial rate of strain. The 
equations incorporating both are 

(a)  radial component 

[( 1 - I )  J1++ (wi R )  + wi RJI,$ (wi R)]  + a, R-l-, 

- a4 (z)' 2w, ~3 2 [ (1 - l)H$y+ (w, R )  + w, RH(& (w,R)] = 0. (19) 

In this equation P* is the frequency of oscillation for two inviscid fluids and is 
inserted merely t o  simplify the form of this equation and results to be obtained 
subsequently. It is given by (cf. Lamb 1932) 

Other quantities introduced in these equations are I?, which is given by 
p o  I +pi ( I  + l), the interfacial tension y, the coefficient of interfacial dilatational 
viscosity K ,  the coefficient of interfacial dilatational elasticity A, and D, which 
is (44 - ( A ~ ~ ~ ~ ;  

(b )  surface divergence 

"1 R2-'( 1' - 1) [ 2 ~ i  + # ( I  + 2 )  + DZ] + a3 [pi( 2(Z2 - 1) JI+h (wi R)  ( = 
- w:R2J1+9 ( w ~ R )  + 2wiRJI+g (ox@) + & ( I  + 2) ( I  - 1) ( ( I  + 1)JI+a ( w i R )  

- wiRJ,+% (wiR)) -Dl(l+ 1) ((1 -l)4++ (wiR) + wiRJI+* ( ~ i R ) ) 1  

- a,R-'-' 2Z(Z + 2)p0 - a ( ~ 7T ) * [2(z2 - 1 ) H\? (w, R)  - a: R Z H ~  (w, R)  
2 ~ ~ ~ 3  

+ 2w0RH\'$~(~,R)] = 0, (21) 

here E is the Coefficient of interfacial shear viscosity, M is the coefficient of inter- 
facial shear elasticity, and AS is given by (s/R) - (HIPR); 

( c )  radial component of surface curl 

4. Evaluation of decay factor and oscillation frequency 
Equations(15), (16), (17), (18), (19), (21) and(22) aresevenlinearhomogeneous 

equations in the seven unknowns B,, ccl, a,, a3, a4, b, and 6,. Hence non-trivial 
solutions exisb only if the determinant of coefficients is zero. The constants b, 
and b, appear only in (18) and (22) and the other five unknowns appear only in 
the other five equations; therefore the determinant of coefficients may be 
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written as the product; of two smaller determinants. The following definitions 
simplify the form of the determinants: 

PP, 2Po L, = --+-C(H), 
I f 1  R2 

X = 0. ( 2 3 )  

There are two solutions to ( 2 3 )  corresponding to two types of wave motion 
which may occur in and around a droplet. In one solution the smaller of the two 
determinants vanishes while the larger one does not. The former condition 
determines P;  the latter implies there is no radial displacement of the interface 
and no radial component of velocity at  any point inside or outside the droplet. 
There is, however, a radial component of vorticity and hence, according to (8), 
there are tangential velocities. Such moCion might be called a shear wave or 
purely rotational wave. It can be shown that waves of this type always decay 
without oscillation, i.e. PI = 0. Scriven & Sternling (1964) proved this result 
for the case of a single fluid having a plane interface, and Bupara (1964) extended 
their proof to include the case of two fluids separated by a spherical interface, 
the situation under study here. We are concerned with surface waves and so 
consider the aperiodically damped, purely rotationaI motions no further. 

The other solution of ( 2 3 )  is the more familiar surface wave in which radial 
velocities and radial displacement of the interface do occur. However, because 
the smaller determinant of ( 2 3 )  is not zero, the only solution for the bj's  is the 
trivial one and there is no radial component of vorticity. The equation obtained 
by setting the larger determinant equal to zero is an implicit equation which can 
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be solved numerically to obtain values of decay factor pR and oscillation fre- 
quency PI for any mode number I ,  in terms of droplet radius R, inviscid oscilla- 
tion frequency p", physical properties of the two fluids, and coefficients of inter- 
facial elasticity and viscosity. 

5. Behaviour when the interface is free 
If the droplet is separated from the exterior fluid by a relatively clean, simple 

interface the coefficients of interfacial viscosity and elasticity are zero and the 
dispersion equation for the surface-wave solution becomes 

= 0, 

(24) 
where G( J )  = - 03 R2 + 2wi RQ'l,+. 

This equation is still sufficiently complex that solution by numerical methods 
is usually required. Although we have done no numerical work, it does appear 
that systematic investigation of the variation of p with fluid properties would be 
of considerable interest. A full tabulation of computed values would have more 
than routine use, for i t  would bring out basic features of the physical behaviour 
of oscillating droplets, features such as the transition between oscillatory and 
aperiodic decay, the number and character of solutions for p in various ranges of 
physical properties, and bounds on the values of pR and PI for different solutions. 
If one may judge from recent discussion of oscillations of two fluids separated by 
a plane interface, determining all of the significant features of droplet oscillation 
is scarcely likely to be a trivial matter. The work of Willson (1965) has shown, for 
example, that, contrary to the belief previously held by some workers, there are 
important aspects of wave propagation on and instability of plane interfaces 
which are not revealed by study of the special case of two fluids having equal 
kinematic viscosities. In  particular, Willson established that if the two viscosi- 
ties are equal but one fluid is of much greater density, there is a range of wave- 
lengths in which only one mode of aperiodic decay exists although two modes are 
found when the fluids have equal kinematic viscosities. The behaviour of ~3 for 
other relationships between properties of the two fluids has evidently not yet been 
studied. But just as detailed study of the analogous plane problem has been 
fruitful so should further scrutiny of the general equation for droplet oscillation. 

There are several special cases in which (24) becomes considerably simplified 
and it is instructive t o  consider these. As indicated below, the results for inviscid 
fluids, for a liquid droplet in gas, and some of those for a cavity are already well 
known. The remainder, notably those applicable when both fluids are liquids 
(§§50 and E ) ,  appear not to have been published previously. All the results, 
both old and new, that are presented here are comprehensively summarized in 
figure 1. 
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( A )  Inviscid j luids 

For inviscid fluids only the inviscid part of the radial velocity solution (6) 
appears. Also, as previously noted, equation (17), the requirement of continuity 
of tangential velocity at  the interface cannot be satisfied. These features of the 
case of inviscid fluids result in elimination of the third and fifth columns and the 
third row of the determinant in (24). The fifth row, which amounts to requiring 
continuity of shear stress at the interface, clearly vanishes as well for inviscid 
fluids. On expanding the remaining terms of the determinant, we find 

p = k ip" .  ( 2 5 )  

Therefore, as would be expected, there is neither amplification nor decay and 
the frequency of oscillation is p* as defined by (20). Indeed this is how ,B* would 
be found if Lamb's result has not been previously substituted to simplify the 
form of (19). 

Calculating velocities of the interior and exterior fluids by means of (8) makes 
obvious the slip which occurs at  the interface. We find that the tangential veloci- 
ties of the two fluids are in precisely opposite directions and that, except a t  
points where V I I Y y  = 0 (in which case both tangential velocities are zero), the 
magnitudes of the tangential velocities are related by 

It can be shown (see Lamb 1932; Benjamin 1962) that results obtained for 
fluids separated by a spherical interface should approach those found for the 
corresponding plane interface problems when droplet radius R and the mode 
number 1 (order of spherical harmonic) simulbaneously become very large. The 
ratio l l R  is maintained constant while passing to the limit, at  which it is identified 
with the wave-number k of simple oscillations of a plane inkerface. In  this light 
it is clear from (26) that in the limit the tangential velocities become approxi- 
mately equal in magnitude and opposite in direction; Chis is in agreement with 
the result found for oscillation of two inviscid fluids separated by a plane inter- 
face (see Lamb 1932). 

(B)  Oscillation of a viscous liquid droplet in a vacuum or gas of negligible 
density and viscosity 

If the exterior fluid is so rarefied that its effecti on motion of the droplet is negli- 
gible, the determinant in (24) is considerably simplified. Expansion and re- 
arrangement give 

which is equivalent to the resuIt of Reid (1960). A good discussion of this problem 
is given by Chandrasekhar (1961), who has computed some values of p using 
(27). His discussion also includes consideration of the following limiting cases. 
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(a)  Low viscosity 

In  the limit as ui+ 0, (27)  reduces to 

where p$ is the frequency of oscillation of an inviscid liquid droplet obtained by 
setting po equal to zero in (20). The decay facfor of (28)  was obtained by Lamb 
(1932), who estimated the rate of viscous dissipation using the velocity distribu- 
tion for inviscid oscillations. When (28)  is reduced to a plane interface formula in 
the manner described above, a decay factor of 2k2vi is obtained, which agrees 
with the result given by Lamb (1932). 

(b)  High viscosity 

As viscosity increases a point is reached beyond which oscillations no longer 
occur and a deformed droplet returns to the spherical shape aperiodically. 
Actually it turns out that there are two possible modes of aperiodic decay. One 
of these has a decay factor which increases without bound as ui -+ co, correspond- 
ing to a very rapid decay; the other has a decay factor which becomes very small, 
corresponding to a very slow decay. The latter mode is described by the following 
equation 

(29)  

A similar result, i.e. one rapidly decaying aperiodic mode and one slowly decaying 
aperiodic mode, is found in the high-viscosity limit for the plane interface prob- 
lem. The smaller decay factor is precisely that obtained by reduction of (29) to a 
plane interface formula (cf. Lamb 1932; Wehausen & Laitone 1960). 

(C)  Oscillation of a cavity or bubble of gas with negligible density and 
viscosity in a viscous liquid 

This special case is very similar to that of the viscous liquid droplet just discussed, 
except that now the interior fluid is considered t o  be so rarefied that it has a 
negligible effect on the outer fluid. In  this case (24)  can be reduced to 

Oscillation frequency and decay factor must be obtained by numerical solution 
of an awkwardly transcendental equation which is quite similar to that for a 
droplet and can be treated by the same techniques (Chandrasekhar 1961). 
Limiting cases are as follows. 

(a)  Low viscosity. As vO+O, Jw,J = ( I p I / u o ) ~ - + c o ;  neglecting terms higher than 
first order in (w,  R)-2, we obtain a quadratic equation in /3 which has the solutions 
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where ,!I$, the oscillation frequency for a cavity in an inviscid fluid, may be 
obtained by setting pi = 0 in (20).  With regard to the sign of the imaginary part 
of ,8 we note that choosing the Hankel function of the first, rather than the 
second, kind in (11)  depends on maintaining wI  3 0. For decaying oscillations it 
is easily shown that if PI 3 0, the proper sign of wI  is obtained by taking the 
square root of /3 having positive real part, i.e. wR 2 0. Likewise if PI < 0,  the 
root with wR 6 0 must be chosen. 

The decay factor of (31)  agrees with that obtained by Lamb (1932) using the 
same method as that used in deriving his result given above in (28)  for the low 
viscosity liquid droplet. It also reduces to the decay factor given above for a 
low viscosity liquid pool. 

( b )  High viscosity. In  the limit vo+oo, wo = ( lp l /vo) :  +0, (30)  yields 

(2Z + 1 )  R2 p = p*2 

2(1+2)(212+ l fv , ,  

This describes it slowly decaying aperiodic mode; (30) also implies the existence 
of a second, rapidly decaying aperiodic mode. The high-viscosity situation is thus 
the same as in the liquid droplet and liquid pool. As was found for the correspond- 
ing liquid droplet result, (29)' equation (32)  in the limit as R-tco, l + m ,  with 
the ratio ZIR constant, reduces to the formula for the slowly decaying aperiodic 
mode in a liquid pool of high viscosity. 

( D )  Oscillation of two viscous f iu ids having small viscosities 

For both the oscillating liquid droplet and the oscillating cavity just considered 
it is found that in the low-viscosity limit the oscillation frequency approaches 
the inviscid frequency and the decay factor approaches that given by Lamb's 
analysis employing the inviscid velocity profiles. Hence we might expect that 
two fluids of low viscosity would, in a similar fashion, oscillate with approxi- 
mately the inviscid frequency and with the decay factor derived by Valentine 
et aZ. (1965) using Lamb's method. Were this so the expression for P would be? 

(2Z+ 1 )  p = -__- [ ( P -  l)pci + Z(Z+ 2)&] k ip* 
R2F (33) 

In  fact, when the determinant in (24)  is expanded and the low viscosity limit 
is considered with terms retained to the same order as in the low viscosity results 
for droplet and cavity, the following expression is obtained: 

(2Z+ 1)[2(12- l)p:p,+2z(z+2)p:p, 

7 Actually this is a slight generalization of their result since they were interested only 
in the case pi = po. 
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The first term of the decay factor in (34) is proportional t o  the square root of 
the product of frequency and viscosity, the same behaviour that is found in 
oscillating boundary layers (see Landau & Lifshitz 1959). This term therefore 
represents at least approximately the rate of decay of oscillations due to viscous 
dissipation in a boundary layer lying on either side of the interface. On the other 
hand, the second term of Dhe decay factor in (34) and the decay factors derived 
by Lamb's method, (28), (31), (33), are all independent of frequency and directly 
proportional to viscosity. These expressions represent approximately the rate 
of decay due to viscous dissipation outside the boundary layer in the regions 
where the velocity distribution is very close to that of the inviscid solution. 

In  the droplet and cavity cases we have situations where one of the two fluids 
is sufficiently rarefied as to have negligible effect on flow of the other fluid. 
Therefore no appreciable boundary-layer flow arises and the inviscid velocity 
profiles provide a good approximation. This conclusion accords with limiting 
behaviour of (34), for in both special cases the first or boundary-layer term of the 
decay factor vanishes and the second or potential-flow term reduces to the 
corresponding expression obtained by Lamb's method, (28) for the droplet and 
(31) for the cavity. However, when both fluids are liquids, their interaction a t  
the interface as expressed by the requirements of no slip and continuity of 
tangential stress, results in a boundary-layer flow which becomes the dominant 
factor in the rate of viscous dissipation. Very small droplets are the exception; 
the effect of size is discussed further below. Because the inviscid solution is 
incapable of accounting for the boundary-layer flow, use of Lamb's method for 
the two-liquid problem yields a result, (33), which is of limited value: it sub- 
stantially underestimates the damping rate. 

An equation for the rate of decay of oscillations of two viscous fluids of low 
viscosity separated by a (nearly) plane interface can be obtained from (34) by 
passing to the limit in the manner described previously. The result agrees wiCh 
that obtained for the plane interface situation by Harrison? (1908) and is 

where 

is the frequency of oscillation of two inviscid fluids with a plane interface. 
Harrison, we might remark, was aware that the no-slip boundary condition is 
the key factor causing this equation to differ significantly in form from that for 
waves on a liquid surface unaffected by the presence of a second phase. 

It is instructive to determine the relative magnitudes of the two terms of the 
frequency and decay factor in (34) for a representative example in which both 
fluids are liquids. For simplicity we suppose that the densities and viscosities 

t During the course of this work we also verified Harrison's result directly by repeating 
his analysis of the plane interface situation. 
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of the two liquids are equal. Then the ratio of the two contributions to the decay 
factor is given by 

second term (rate of viscous dissipation far from interface) 
first term (rate of dissipation in boundary layer) 

RD = 

(4Z2+4E- 1) 

(2Z+ 1 ) Z  [1(1+ 1) (1 - 1) (I+ 2 ) p '  

The ratio of the two contributions to the frequency is given by 

(37) 
frequency correction - - 1 (!y (SZ + 1)P R, = 
inviscid frequency 442 Ry [Z(Z + 1) (1 - 1) (1 + 2)]4 ' 

To obtain numerical values of these ratios we further suppose that the values 
of p andp are those of water, that interfacial tension is 40 dynes/cm, a reasonable 
value for an oil-water interface with no adsorbed surface-active material, that 

Reciprocal decay factor (s) for I = 2 
Frequency r- A > 

Droplet p* (s-l) Frequency Equation (34) Equation (34) 
diameter calculated (s-l) Equation with calculated with measured 

(em) for l  = 2 (measured) (33) frequency frequency Measured 

0.98 28.3 37.8 2.3 1 .o 0.9 0.7 
0.78 42.0 63.0 1.5 0.6 0.5 0.2 
0.78 36.4 56.8 1.5 0.7 0.6 0.6 
1.13 25.7 47.3 3.1 1.2 0.9 0.4 
1.13 25.1 44.0 3-1 1.2 0.9 0.4 
1.13 25.1 37.8 3.1 1.2 1.0 0.3 

TABLE 1. Comparison of decay times calculated by equations (33) and (34) for experimental 
data of Valentine, Sather & Heideger (1965) on droplets of a CCl,-C,H, mixture 
oscillating in water 

droplet radius is 0.1 cm, and that 1 = 2 . t  With these values we find RD = 0.16, 
which demonstrates that under these conditions the boundary-layer effect is 
dominant in determining the decay factor. We also calculate R, = 0.04, which 
indicates that the inviscid frequency is still a good approximation. It is note- 
worthy that for given values of 1 and fluid properties, both RD and R, increase 
as droplet radius decreases. Thus it appears that for sufficiently small droplets 
(34) no longer provides a good approximation to p and numerical solution of 
(24) would be required. 

We have used (34) to calculate values of decay factor from the experimental 
data of Valentine et uZ. (1965) on droplets of a mixture of carbon tetrachloride 
and benzene oscillating in water. These droplets were about one centimeter in 
diameter and so we would expect the boundary-layer effect to be dominant. As 
shown in table 1 agreement with experimentally measured decay factors is 
considerably improved over that obtained by use of (33), which does not account 

t This value of E is of course chosen because lower values of I correspond to  motions 
which are not oscillations (uniform droplet compression or expansion and droplet transla- 
tion) and because oscillations for higher values of I decay more rapidly. 
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for the boundary-layer effect. The remaining discrepancy may, as suggested by 
Valentine et al., be due to the fact that the assumption of small amplitude, on 
which the analysis rests, was violated by the conditions of the experiment. 

( E )  Motion of two JEuids having large viscosities 

To determine the behaviour of the dispersion equation (24) in the limib as v0+ co 
and vi --f co would require considerable effort that can be avoided by using the 
approach to the slowly decaying aperiodic mode advocated by Lamb (1932) 
and employed by him in the liquid droplet case. This approach rests on the 
hypothesis that plv+ 0 as v-+ 00 and therefore yields no information about the 
existence of a second, rapidly decaying aperiodic mode. When plv -+ 0, (3) can 
be replaced by the biharmonic equation V4(rw) = 0 ,  and (6) goes over to 
W ( r )  = a,rl+ u2r-Z-l +u3rrf2 + a,r-l+l.t The kinematic, continuity of velocity, 
and force-balance boundary conditions must still be satisfied but their detailed 
form is of course altered from (15)-( 17), (19) and (21) by the change in form of W.  
The dispersion equation obtained by essentially the same route as (24) is 

+ 8popi l( l 2  - 1 ) (I + 2) + 3p0pi (21 + 1)' 

It is easily seen that this equation reduces to (29) and (32) in the cases of a liquid 
droplet and of a cavity, respectively. For two highly viscous fluids separated 
by a plane interface (38)  reduces to 

which agrees with the result given by Wehausen & Laitone (1960). 

6. Oscillations when the interface is inextensible 
Equation (23) is applicable to  an oscillating droplet with an interface having 

arbitrary viscous and elastic properties. We wish to simplify this equation to 
obtain an approximate expression for p when the inberface consists of a membrane 
or highly condensed film of surface-active material. It seems reasonable to 
suppose, following Lamb (1932) and Benjamin (1962), Ohat such an interface is 
essentially 'inextensible ', i.e. to first order no local expansion or contraction 
can occur. This restriction can be imposed simply by letting D( = (K /R)  - (A/@)), 
which is a combined coefficient of surface dilatational elasticity and viscosity, 
become very large in magnitude. This amounts to supposing that a very small 
expansion or contraction produces a very large restoring force preventing further 
motion. Then if the large determinant of (23) is expanded and all terms except 

t This functional dependence satisfies the biharmonic equation. It is entirely consistent 
with the facts that as o) += 0, 

a3 (7r/2wr)kJ,+)(wr) .+ a;wz[[rz  - ~ ~ r ~ + ~ / 2 ( 2 1 +  3)] in (10) 

a4(7r /2o)r )+~~j4(wr)  += a~w-[-1[r-l-l+o)2r-z+1/2(21- I)] in (11). and 
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those involving D are neglected, an approximate dispersion equation for an 
oscillating droplet with an inextensible interface is obtained. If both bulk fluids 
have low viscosities, a procedure similar to that used for the free-interface 
problem yields 

This equation shows that, as was found for the two-fluid free-interface situation 
(in (34)), the primary cause of damping of oscillations is viscous dissipation in a 
boundary layer near the interface. In  view of the fact Dhat the dispersion equation 
used to obtain (40) is itself approximate, we have not continued Dhe expansion 
for the low viscosity case to include terms in the decay factor proportional to 
higher powers of the fluid viscosities. 

When the fluids have equal densities and viscosities, comparison of (40) 
with the corresponding free-interface result given by (34) reveals that 

(41) 
inextensible interface decay factor - 2( 212 + 21 + 5 )  

This ratio obviously decreases toward unity as 1 increases. Its maximum value, 
at  1 = 2, is only 1.36. We see therefore that when both fluids are liquids of low 
viscosity, the rate of damping with an inextensible interface is not substantially 
greater than that when the interface is free. 

If the exterior fluid is a gas of low density and viscosity, (40) reduces to the 
formula for a liquid droplet of low viscosity covered by an inextensible film 

_ _ ~  - 
free interface decay factor (21+1)2- . 

Similarly, if the interior fluid is a gas of low density and viscosity (40) yields a 
formula for a cavity bounded by an inextensible film 

These equations indicate that a boundary-layer flow exists near the interface 
when the interface is inextensible, in contrast to the corresponding free interface 
results ((28) and (31)) where no appreciable boundary-layer flow exists in the 
low viscosity limit. Because of the boundary-layer flow the rate of damping is 
substantially greater for the inextensible interface situation. 

Equation (43) is in agreement with the approximate expression derived by 
Benjamin (1962), who estimated the rate of dissipation on the basis of boundary- 
layer theory. It is of interest to note that in Benjamin’s derivation interfacial 
shear elasticity and viscosity do not appear at  all, while in the foregoing deriva- 
tion exactly the same resulD is obtained by requiring only that the magnitude of 
S{ = ( e /R)  - (M/PR)},  the combined coefficient of shear elasticity and viscosity, 
be small in comparison with the magnitude of D, the combined coefficient of 
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dilatational elasticity and viscosity. This requirement ensures that dissipation 
of energy due to shearing deformation of the interface itself is small in comparison 
with dissipation due to the boundary-layer flow in the underlying bulk liquid. 

Using the same procedure as in the preceding section, we may reduce the above 
equations to equations for the corresponding plane interface situations. For two 
fluids of low viscosity separated by a plane inextensible interface, (40) reduces to 

We have confirmed this result, which does not appear 60 have been published 
previously, by direct analysis using the differential equations and boundary- 
conditions applicable to a plane interface. From (42) and (43) we obtain an equa- 
tion valid when one of the fluids is a gas of low density and viscosity 

This equation agrees with the result given by Lamb (1932). 
There is one significant difference between the droplet and plane interface 

situations. When the interface is deformed about a plane, the interfacial visco- 
elastic coefficients S and D always appear in the combination S + D. Therefore 
(44) and (45) are applicable if either or both of S and D become very large. 
However, in the case of a droplet a dispersion relation differing from that which 
led to (40) would be found if S were supposed to be very large and D finite. If 
both S and D become very large, that is, if the interface has a very large resistance 
to both expansion and shear deformation, there can be no motion at  all; this can 
be seen directly in the force-balance equations. Indeed, the radial-component 
equation (19) has only one term involving S or D,  which expressed in terms of 
interfacial velocity is 

If D increases without bound, the expression in brackets, which represents the 
rate of local expansion of the interface (cf. Weatherburn 1927, 1930), must 
vanish. The surface divergence equation (21) has two terms in S and D, namely 

In view of the radial equation both expressions in brackets must vanish in the 
limit as X and 23 simultaneously approach infinite magnitude. It is readily shown 
that both vanish only when there is no motion whatsoever in or of the interface. 

This difference between the plane interface and droplet results may be ex- 
plained as follows. Because a plane has zero curvature, the rate of local expansion 
is given simply by VII .  vII.  Hence elements of the interface can be given small 
displacements normal to the interface without producing any local expansion, 
to first order. Moreover, such displacements involve no tangential motion and so 
shear deformation is absent. We see bherefore that very small amplitude oscilla- 
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tions can occur even when S and D are both very large. In  contrast, the local rate 
of expansion for a nearly spherical interface is (VII.vI,+ (2vJR) ) ;  from this 
expression we see that any radial motion of the droplet interface must produce 
expansion unless there is a compensating tangential motion. But the tangential 
motion would involve shear deformation, and therefore no motion can occur 
when S and D are both large. 

7. Summary and conclusions 
A general dispersion equation has been derived which is applicable to oscilla- 

tions of a droplet of one viscous fluid immersed in another viscous fluid, even 
when the interface between the two possesses viscous and elastic properties of 
its own. Equations have been obtained for frequency and rate of damping of 
oscillations for a number of special cases when the interface is free and when it is 
inextensible. 

The analysis shows that if both fluids are liquids of low viscosity, as they are in 
many instances of practical importance, the primary contribution to the rate of 
damping of oscillations is, except for very small droplets, from viscous dissipation 
in a boundary layer near the interface. Owing to this boundary-layer flow the 
velocity distribution in the region near the interface differs significantly from the 
velocity distribution obtained by assuming both fluids to be inviscid. The latter, 
in common with most solutions for inviscid fluids, actually involves slip at  the 
interface. Therefore even if both liquid viscosities are very low, the velocity 
distribution found for the inviscid case is not a good basis for deriving approxi- 
mate expressions for the rate of damping. On the other hand, if either the interior 
or exterior fluid is a gas of low: density and viscosity, there is no appreciable 
boundary-layer flow, provided the interface is free, and a good approximation 
to the damping rate may be obtained by using the velocity distribution of the 
inviscid case. But when the interface is inextensible, a boundary-layer flow 
occurs even in these single-fluid situations. 
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